autocache Documentation
Release 1

Noah Silas

September 03, 2011






CONTENTS







autocache Documentation, Release 1

Table of Contents:

CONTENTS 1



autocache Documentation, Release 1

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

Autocache addresses two of the most common scenarios for caching and cache invalidation for django models: in-
stance caching and related objects caching.

1.1 Instance Caching

This is the practice of caching individual model instances. Autocache provides a CacheController that you can attach
to models to cause automatic caching and invalidations.

class Model (django.models.Model) :
cache = autocache.CacheController ()
field = django.models.TextField()

Model.objects.get (pk=27) # hits the database
Model.cache.get (27) # Tries cache first

1.2 Related Objects Caching

Having fetched an instance of a model, a frequent database operation is to find all the instances of another model
that are related to your instance via foreign keys. You can attach a RelatedCacheController to your model to enable
automatic caching and invalidation of these relations.

instance = Model.cache.get (pk=27)
related_things = instance.things_set.all() # hits the database
related_things = instance.cache.things_set # Tries cache first

The RelatedCacheController will automatically detect and cache objects related to the model it resides on by For-
eignKeys, ManyToManyFields, and OneToOneFields.




autocache Documentation, Release 1

4 Chapter 1. Introduction



CHAPTER
TWO

EXAMPLES

The example model defines a person with a name.

class Person (models.Model) :
name = models.CharField(max_length=64)

cache = RelatedCacheController ()

def _ unicode_ (self):
return self.name

class Book (models.Model) :
title = models.CharField (max_length=64)
author = models.ForeignKey (Person)




autocache Documentation, Release 1

6 Chapter 2. Examples



CHAPTER
THREE

INSTANCE CACHING

The CacheController works by listening for the post_save and post_delete signals that the model it is attached to will
emit when you alter an instance. This allows it to automatically keep cached instances up to date!

from django.db import models
from autocache.controller import CacheController

class Model (models.Model) :
fieldl = IntegerField()
field2 = TextField()

cache = CacheController ()

3.1 Reading From Cache

You can use the cache controller like a very simple manager: currently only the .get (pk) operation is supported.
This will try to get and return the model instance from cache. In the event that the key does not have a cache entry,
the value is read from the database using the model’s default manager. The result is placed into the cache before being
returned to the caller.

obj = Model.cache.get (pk=933)
Just like objects.get(), cache.get() may raise a Model.DoesNotExist exception. A DoesNotExist marker is placed in

cache when an instance is deleted or an attempt to fetch a non-existent row is made, preventing subsequent requests
against the cache from hitting DB or returning stale data.

3.2 Instance Cache Keys

The default CacheController creates keys based on your model’s app, name and primary key, separated by colons:
app_label :model_name:primary_key. This should present you with a unique key for each object.

Note: This can be problematic if your model uses a primary key that can contain whitespace and you are using
memcached as your cache backend. One possible solution is to provide a key generation function that hashes the key
(see example below). You can also use a cache backend like Django NewCache that automatically hashes the key.



https://github.com/ericflo/django-newcache

autocache Documentation, Release 1

3.2.1 Overriding Cache Key Generation

You can subclass CacheController and override the make_key function to customize your cache keys.

CacheController.make_key(self, pk) Called to generate all cache keys for this controller. You can access the model
class that this controller is attached to through self .model.

Examples

import hashlib

class HashCacheController (CacheController) :
""" Hashes the cache key. This creates keys that are difficult to type
by hand, but can avoid problems related to key content and length.

mmn

def make_key(self, pk):
key = super (HashCacheController, self) .make_key (pk)
return hashlib.sha256 (key) .hexdigest ()

class ModelVersionCacheController (CacheController) :
"mr Versions each cache key with the model’s CACHE_VERSION attribute.
Updating the model’s version when altering it’s schema will

effectively invalidate all cached instances.
mrmmn

def make_key (self, pk):
model_version = getattr (self.model, ’'CACHE_VERSION’, 0)
key = 7 :’ .join([super (HashCacheController, self), model_version])
return key

3.3 Cache Timeouts

The default cache timeout is one hour. You can specify a number of seconds to timeout as the t imeout parameter in
the CacheController constructor. :

cache = CacheController (timeout=(60 60 * 24 * 7)) # timeout 1in one week

3.3.1 Overriding the default timeout

If you find yourself frequently overriding the default timeout, you can subclass the CacheController and set a
DEFAULT_TIMEOUT attribute:

class LongCacheController (CacheController):
# timeouts longer than 30 days are treated as absolute timestamps by
# memcached; that makes 30 days the largest naive value we can use.
DEFAULT_TIMEOUT = 60 = 60 * 24 x 30

3.3.2 Multicache

Starting in Django 1.3 you could define multiple cache backends. If you want to tie the instance cache for a model to
a backend other than ‘default’, you can pass the name of the backend you want to use into the controller constructor
as the keyword argument backend.

8 Chapter 3. Instance Caching



autocache Documentation, Release 1

3.4 Caveats

Autocache relies on the post_save and post_delete signals to keep your cache up to date. Performing operations that
alter the database state without sending these signals will result in your cache becoming out of sync with your database.

Note: Do not use queryset.update() with models that have a CacheController attached! Your cache will not be
updated.

3.4. Caveats 9



autocache Documentation, Release 1

10 Chapter 3. Instance Caching



CHAPTER
FOUR

RELATED OBJECT CACHING

4.1 Introduction

Given a model instance, one frequent database query is to get instances of another model that are related. This is
commonly accomplished with the use of a Foreign Key.

We will be using the following models as examples throughout this document:

from django.db import models
from autocache.controllers import RelatedCacheController

class Person (models.Model) :
name = models.CharField(max_length=200)

cache = RelatedCacheController ()

class Book (models.Model) :
author = models.ForeignKey (Person, related_name=’'books’)
title = models.CharField (max_length=200)
published_date = models.DateTimeField()

class Meta:
default_ordering = (' -published_date’)

Suppose you have an authorship view, displaying all of the books that a given author has published. The view would
typically look something like this:

def authorship (request, author_id):
try:
author = Person.objects.get (pk=author_id)
except Person.DoesNotExist:
raise Http404 ("No such person")
books = author.books.all ()
return render (
request,
{"author’: author, ’"books’: books},
"authorship.html’

This pattern will invoke two database queries: one to fetch a Person, and one to fetch the books with a foreign key
relationship to the author. We can use the autocache features to try the cache first.

author = Person.objects.get (pk=author_id) # database query
author = Person.cache.get (pk=author_id) # cached query

11



autocache Documentation, Release 1

books author.books.all () # database query
books = author.cache.books # cached query

4.2 Reading From Cache

Given an instance of an object with a RelatedCacheController, all of the attributes on the instance to
fetch related objects are mirrored on the controller. If the instance has a .thing_set and a Related-
CacheManager assigned to cache, then instance.cache.thing_set will return the same values as
list (instance.thing_set.all()).

Note: Related object caches return lists of instances, not querysets. This means that you don’t need to put the .all()
on the end, but also that you can not apply django queryset operations like . filter () or .select_related()
on the result.

4.3 Cache Keys

A cache key for the instance is obtained by calling the same make_key (pk) function described in Instance Cache
Keys. The key for the related objects is the instance key, appended with the related name of the collection.

author = Person.objects.get (pk=1) # get an instance of a Person in the sample_app
author.cache.books # cache key 1is sample_app:Person:1:books

4.4 Cache Timeouts and Multicache

The RelatedCacheController accepts the same timeout and backend arguments as CacheController.

cache = RelatedCacheController (
timeout=(60 = 60 * 24 x 7), # timeout in one week
backend="my_app_cache’), # use the cache backend named
# 'my_app_cache’ in settings.py

12 Chapter 4. Related Object Caching



